Search results for "thin film solar cells"

showing 6 items of 6 documents

Colloidal Self-assembled Nanosphere Arrays for Plasmon-enhanced Light Trapping in Thin Film Silicon Solar Cells

2014

To realize high-efficiency thin-film silicon solar cells it is crucial to develop light-trapping methods that can increase absorption of the near- bandgap light in the silicon material. That can be achieved using the far-field scattering properties of metal nanoparticles (MNP) sustaining surface plasmons. The MNPs should be inserted in the back of the cell, embedded in the transparent conductive oxide (TCO) layer which separates the rear mirror from the silicon layers. In this way, a plasmonic back reflector (PBR) is constructed that can redirect light at angles away from the incidence direction and thereby increase its path length in the cell material. In this work, a novel technique is pr…

Light trappingMaterials scienceSiliconScatteringSurface plasmonColloidal Metal Nanoparticlechemistry.chemical_elementNanotechnologyThin film solar cellsPlasmonicSettore ING-INF/01 - ElettronicaEnergy (all)chemistryEnergy(all)Colloidal Metal NanoparticlesColloidal goldPlasmonicsMie theoryPlasmonic solar cellThin filmPlasmonTransparent conducting filmThin film solar cellEnergy Procedia
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

Abstract The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic tec…

Materials scienceCondensed Matter Physic02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSilver nanoparticlelaw.inventionNanoparticlelawPhotovoltaics0103 physical sciencesSolar cellMechanics of MaterialGeneral Materials Sciencesubwavelength nanostructuresDewettingThin filmSurface plasmon resonancePlasmonThin film solar cell010302 applied physicsthin film solar cellsbusiness.industryMechanical EngineeringSelf-assemblyself-assemblyLocalized surface plasmon resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsphotovoltaicsMechanics of MaterialsOptoelectronicsPlasmonic-enhanced light trappingSubwavelength nanostructurenanoparticlesMaterials Science (all)0210 nano-technologybusinessPhotovoltaicLocalized surface plasmon
researchProduct

Colloidal plasmonic back reflectors for light trapping in solar cells.

2014

A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…

Materials scienceMie scatteringPhysics::OpticsReflectionTrapping7. Clean energyThin film devices Colloidal arraySettore ING-INF/01 - ElettronicaColloidal solutionColloidOpticsElectromagnetic simulationThin film solar cells PlasmonsLow temperatureGeneral Materials SciencePlasmonic solar cellThin filmPlasmonPhotocurrentNear infrared spectrabusiness.industrySolar cellCondensed Matter::Soft Condensed MatterSynthesis (chemical)Light trapping structureOptoelectronicsDiffuse reflectanceDiffuse reflectionbusinessNanoscale
researchProduct

ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

2021

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over th…

Materials sciencechemistry.chemical_elementanti-recombination layer02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesAtomic layer depositionAntimonyPhotovoltaicsinterfacial layerGeneral Materials Sciencepassivation layerÒxidsMaterialsCèl·lules fotoelèctriquesextremely thin absorberthin film solar cellsintegumentary systemLow toxicitybusiness.industrytunnel barrierfood and beverages021001 nanoscience & nanotechnology0104 chemical sciencesTunnel barrierchemistrybiological sciencesatomic layer depositionSolar energy conversionOptoelectronicschalcogenidesThin film solar cell0210 nano-technologybusinessResearch Article
researchProduct

Plasmonic nanostructures for light trapping in thin-film solar cells

2019

M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) st…

PhotovoltaicsMaterials Science(all)Mechanics of MaterialsMechanical EngineeringNanoparticlesPlasmonic-enhanced light trappingSubwavelength nanostructuresSelf-assemblySDG 7 - Affordable and Clean EnergyLocalized surface plasmon resonanceThin film solar cellsCondensed Matter Physics
researchProduct

Impact of transparent conductive oxide on the admittance of thin film solar cells

2010

Abstract The impact of transparent electrically conducting oxide (TCO) on the admittance measurements of thin film p–i–n a-Si:H solar cells was investigated. Admittance measurements on solar cell devices, with different area and geometry, in a wide range of frequencies and biases were performed. The admittance measurements of the investigated solar cells, which use the TCO as an electrical contact, showed that the high frequency admittance per area unit depends on the area. This effect increases both with the probe frequency and the size of the solar cells. Transmission line model valid for strip geometry which explains how the resistivity of the TCO layer impacts the measured admittance of…

Theory of solar cellsMaterials scienceAdmittanceintegumentary systemEquivalent series resistancebusiness.industryCondensed Matter PhysicsCapacitanceElectronic Optical and Magnetic Materialslaw.inventionTransparent conductive oxide (TCO)Admittance CV measurementTransmission linesThin film solar cellsa-Si:H Series resistanceOpticslawParasitic elementSolar cellMaterials ChemistryElectrical and Electronic EngineeringThin filmbusinessTransparent conducting filmSolid-State Electronics
researchProduct